

toán 10 cánh diều trang 77 thành phố Lai Châu
Giới thiệu trò chơi|Chơi trong thế giới trò chơi thú vị
Với sự phát triển của công nghệ,áncánhdiề trò chơi đã trở thành một phần không thể thiếu trong cuộc sống của con người. Ngày nay, các nhà phát triển tiếp tục tung ra nhiều loại game khác nhau để đáp ứng nhu cầu của người chơi. Trong số đó, game chắc chắn là thể loại game thu hút được nhiều sự chú ý. Trong thế giới trò chơi với cốt lõi là sự phấn khích và vui nhộn này, bạn sẽ trải nghiệm những niềm vui và thử thách chưa từng có.
toán 10 cánh diều trang 77Giải SGK Toán 11 trang 77 Cánh Diều tập 1
Bài 1 trang 77 SGK Toán 11 tập 1 – Cánh DiềuDùng định nghĩa xét tính liên tục của hàm số (fleft( xight) = 2{x^3} + x + 1) tại điểm (x = 2.)Phương pháp:Hàm số (y = fleft( xight)) được gọi là liên tục toán 10 cánh diều trang 77 tại ({x_0}) nếu (mathop {lim}limits_{x o {x_0}} fleft( xight) = fleft( {{x_0}}ight))Lời giải:Hàm số (fleft( xight) = 2{x^3} + x + 1) xác định trên (mathbb{R}).Ta có: (begin{array}{l}mathop {lim}limits_{x o 2} fleft( xight) = mathop {lim}limits_{x o 2} left( {2{x^3} + x + 1}ight) = {2.2^3} + 2 + 1 = 17\fleft( 2ight) = {2.2^3} + 2 + 1 = 17\ Rightarrow mathop {lim}limits_{x o 2} fleft( xight) = fleft( 2ight)end{array})Do đó hàm số liên tục tại x = 2.Bài 2 trang 77 SGK Toán 11 tập 1 – Cánh DiềuTrong các hàm số có đồ thị ở Hình 15a, 15b, 15c, hàm số nào liên tục trên tập xác định của hàm số đó? Giải thích.Phương pháp:– Các hàm đa thức liên tục trên (mathbb{R})– Các hàm phân thức hữu tỉ liên tục trên từng khoảng xác định của chúng– Hàm số (y = fleft( xight)) được gọi là liên tục tại ({x_0}) nếu (mathop {lim}limits_{x o {x_0}} fleft( toán 10 cánh diều trang 77 xight) = fleft( {{x_0}}ight))Lời giải:Bài 3 trang 77 SGK Toán 11 tập 1 – Cánh DiềuBạn Nam cho rằng: “Nếu hàm số (y = fleft( xight)) liên tục tại điểm ({x_0},) còn hàm số (y = gleft( xight)) không liên tục tại ({x_0},) thì hàm số (y = fleft( xight) + gleft( xight)) không liên tục tại ({x_0})”. Theo em, ý kiến của bạn Nam đúng hay sai? Giải thích.Phương pháp:Hàm số (y = fleft( xight)) được gọi là liên tục tại ({x_0}) nếu (mathop {lim}limits_{x o {x_0}} fleft( xight) = fleft( {{x_0}}ight))Lời giải:Theo em ý kiến của bạn Nam là đúng.Ta có: Hàm số (y = fleft( xight)) liên tục tại điểm ({x_0}) nên (mathop {lim}limits_{x o {x_0}} fleft( xight) = fleft( {{x_0}}ight))Hàm số (y = gleft( xight)) không liên tục tại ({x_0}) nên (mathop {lim}limits_{x o {x_0}} gleft( xight)e gleft( {{x_0}}ight))Do đó (mathop {lim}limits_{x o {x_0}} left[ {fleft( xight) + gleft( xight)}ight] = mathop {lim}limits_{x o {x_0}} fleft( xight) + mathop {lim}limits_{x o {x_0}} gleft( xight)e fleft( {{x_0}}ight) + gleft( {{x_0}}ight))……
toán 10 cánh diều trang 77Giải SBT Toán 10 trang 105, 106 Cánh Diều tập 1
Bài 57 trang 105 SBT Toán 10 – Cánh DiềuCho tam giác ABC. Giá trị của biểu thức (overrightarrow {BA} .overrightarrow {CA} ) bằng:A. AB. AC. cos(widehat {BAC}) B. – AB. AC. cos(widehat {BAC}) C. AB. AC. cos(widehat {ABC}) D. AB. AC. cos(widehat {ACB})Lời giải:Ta có: (overrightarrow {BA} .overrightarrow {CA} = left( { – overrightarrow {AB} }ight).left( { – overrightarrow {AC} }ight) = overrightarrow {AB} .overrightarrow {AC} = AB.AC.cos widehat {BAC})Chọn ABài 58 trang 105 SBT Toán 10 – Cánh DiềuCho tam giác ABC. Giá trị của biểu thức (overrightarrow {AB} .overrightarrow {BC} ) bằng:A. AB. BC. cos(widehat {ABC}) B. AB. AC. cos(widehat {ABC}) C. – AB. BC. cos(widehat {ABC})D. AB. BC. cos(widehat {BAC})Phương toán 10 cánh diều trang 77 pháp:Biến đổi (overrightarrow {AB} ) và (overrightarrow {BC} ) thành 2 vectơ chung gốc rồi sử dụng định nghĩa tích vô hướng của hai vectơLời giải:Đáp án đúng là ABài 59 trang 105 SBT Toán 10 – Cánh DiềuCho đoạn thẳng AB. Tập hợp các điểm M nằm trong mặt phẳng thoả mãn (overrightarrow {MA} .overrightarrow {MB} = 0)là:A. Đường tròn tâm A bán kính AB B. Đường tròn tâm B bán kính AB C. Đường trung trực của đoạn thẳng AB D. Đường tròn đường kính ABPhương pháp:Sử dụng tính chất (overrightarrow a .overrightarrow b = 0 Leftrightarrow left( {overrightarrow a ,overrightarrow b}ight) = {90^0}) để tìm vị trí điểm MLời giải:Đáp án đúng là DBài 60 trang 105 SBT Toán 10 – Cánh DiềuNếu hai điểm M, N thoả mãn (overrightarrow {MN} .overrightarrow {NM} = – 9) thì:A. MN = 9 B. MN = 3 C. MN = 81 D. MN = 6Lời giải:Theo giả thiết, (overrightarrow {MN} .overrightarrow {NM} = – 9 Leftrightarrow overrightarrow {MN} .overrightarrow {MN} = 9 Leftrightarrow {left( {overrightarrow {MN} }ight)^2} = 9 Leftrightarrow M{N^2} = 9 Leftrightarrow MN = 3) Chọn BBài 61 trang 105 SBT Toán 10 – Cánh DiềuCho tam giác ABC đều cạnh a. Các điểm M, N lần lượt thuộc các tia BC và CA thoả mãn (BM = frac{1}{3}BC,CN = frac{5}{4}CA). Tính:a) (overrightarrow {AB} .overrightarrow {AC}……
toán 10 cánh diều trang 77Giải bài tập Bài 2. Giải tam giác (C4 – Toán 10 Cánh diều)
Phương pháp giải Hướng dẫn giải a) Áp dụng định lí cosin trong tam giác ABC ta có:(A{B^2} = A{C^2} + B{C^2} – 2.AC.BC.cos C)(begin{array}{l} Leftrightarrow A{B^2} = {15^2} + {12^2} – 2.15.12.cos {120^o}\ Leftrightarrow A{B^2} = 549\ Leftrightarrow AB approx 23,43end{array})b) Áp dụng định lí sin trong tam giác ABC, ta có:(frac{{BC}}{{sin A}} = frac{{AB}}{{sin C}})( Rightarrow sin A = frac{{BC}}{{AB}}.sin C = frac{{12}}{{23,43}}.sin {120^o} approx 0,44)( Rightarrow widehat A approx {26^o}) hoặc (widehat A approx {154^o}) (Loại)Khi đó: (widehat B = {180^o} – ({26^o} + {120^o}) = {34^o})c)Diện tích tam giác ABC là: (S = frac{1}{2}CA.CB.sin C = frac{1}{2}.15.12.sin {120^o} = 45sqrt 3 ) Phương pháp giải Hướng dẫn giải Áp dụng định lí sin trong tam giác ABC ta có:(frac{{AB}}{{sin C}} = frac{{BC}}{{sin A}})( Rightarrow sin C = sin A.frac{{AB}}{{BC}} = sin {120^o}.frac{5}{7} = frac{{5sqrt 3}}{{14}})( Rightarrow widehat C approx 38,{2^o}) hoặc (widehat C approx 141,{8^o}) (Loại)Ta có: (widehat A = {120^o},widehat C = 38,{2^o})( Rightarrow widehat B = {180^o} – left( {{{120}^o} + 38,{2^o}}ight) = 21,{8^o})Áp dụng định lí cosin trong tam giác ABC ta có:(begin{array}{l}A{C^2} = A{B^2} + B{C^2} – 2.AB.BC.cos B\ Leftrightarrow A{C^2} = {5^2} + {7^2} – 2.5.7.cos 21,{8^o}\ Rightarrow A{C^2} approx 9\ Rightarrow AC = 3end{array})Vậy độ dài cạnh AC là 3. Phương pháp giải Hướng dẫn giải toán 10 cánh diều trang 77a)Ta có: (widehat A = {180^o} – (widehat B + widehat C)) ( Rightarrow widehat A = {180^o} – ({100^o} + {45^o}) = {35^o})Áp dụng định lí sin trong tam giác ABC ta có:(frac{{AB}}{{sin C}} = frac{{AC}}{{sin B}} = frac{{BC}}{{sin A}})( Rightarrow left{ begin{array}{l}AC = sin B.frac{{AB}}{{sin C}}\BC = sin A.frac{{AB}}{{sin C}}end{array}ight.)( Leftrightarrow left{ begin{array}{l}AC = sin {100^o}.frac{{100}}{{sin {{45}^o}}} approx 139,3\BC = sin {35^o}.frac{{100}}{{sin {{45}^o}}} approx 81,1end{array}ight.)b)Diện tích tam giác ABC là: (S = frac{1}{2}.BC.AC.sin C = frac{1}{2}.81,1.139,3.sin {45^o} approx 3994,2.) Phương pháp giải Hướng dẫn giải a) Áp dụng định lí cosin trong tam giác ABC, ta có: (cos A ……
betting thành phố Lạng Sơn Trò chơi trên web: Xây dựng cuộc phiêu lưu ảo của bạnTrong xã hội hiện đạ
2025-10-01 08:0788 láng hạ thuộc phường nào thành phố Hà Tĩnh Giới thiệu trò chơi|Chơi trong thế giới trò chơi thú v
2025-10-01 08:0477 pro 4u thành phố Vĩnh Long Trò chơi máy tính: Điểm khởi đầu mới để khám phá toàn diện thế giới th
2025-10-01 08:04alo 789 sòng bạc thành phố Sơn La Games: Đắm chìm trong niềm vui chơi game bất tậnTrong cuộc sống hố
2025-10-01 07:50how to load bingo plus thành phố Đồng Hới Giới thiệu trò chơiVới sự phát triển không ngừng của công
2025-10-01 07:37aog777 thành phố Yên BáiTrong cuộc sống nhịp độ nhanh ngày nay, nhiều người tìm cách thoát khỏi thế
2025-10-01 06:37b66 club casino thành phố Vĩnh Long Trò chơi-Cho phép trải nghiệm nhập vai đỉnh cao, hạnh phúc không
2025-10-01 06:2520 jili casino thành phố Bến Cát Trò chơi di động: Mùa lễ hội cầm tay của giải trí đắm chìmTrong kỷ
2025-10-01 06:19-
sabong bet casino 2025-10-01 07:58
-
aog777 sòng bạc 2025-10-01 07:58
-
365bet 2025-10-01 07:49
-
188betvui casino 2025-10-01 07:28
-
highest win rate online casino philippines 2025-10-01 07:27
-
288bet 2025-10-01 07:04
-
7m 2s 2025-10-01 05:55
-
a13 bionic vs snapdragon 888 2025-10-01 05:50